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Abstract: CO2 storage in salt rock is simulated with the Finite Element Method (FEM), assuming constant gas pressure. 7 

The initial state is determined by simulating cavity excavation with a Continuum Damage Mechanics (CDM) model. A 8 

micro-macro healing mechanics model is proposed to understand the time-dependent behavior of halite during the 9 

storage phase. Salt is viewed as an assembly of porous spherical inclusions that contain three orthogonal planes of 10 

discontinuity. Eshelby’s self-consistent theory is employed to homogenize the distribution of stresses and strains of the 11 

inclusions at the scale of a Representative Elementary Volume (REV). Pressure solution results in inclusion 12 

deformation, considered as eigenstrain, and in inclusion stiffness changes. The micro-macro healing model was 13 

calibrated against Spiers’ oedometer test results, with uniformly distributed contact plane orientations. FEM simulations 14 

show that independent of salt diffusion properties, healing is limited by stress redistributions that occur around the 15 

cavity during pressure solution. In standard geological storage conditions, the displacements of the cavity occur within 16 

the five first days of storage and the damage is reduced by only 2%. These conclusions still need to be confirmed by 17 

simulations that account for changes of gas temperature and pressure over time. For now, the proposed modeling 18 

framework can be applied to optimize crushed salt back filling materials and can be extended to other self-healing 19 

materials. 20 
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The low permeability and self-healing potential of salt rock (halite) makes it a good potential host material for 43 

long-term geological storage, especially in wet conditions. In favorable stress, pore pressure and temperature conditions, 44 

salt stiffness and strength can indeed increase due to pressure solution, solid diffusion and recrystallization (Chan, et al. 45 

1998; Tsang, et al. 2005; Zhu and Arson, 2015). Pressure solution is a very effective healing mechanism, common in 46 

crystalline media that contain water films, especially in halite. Salt minerals dissolve at contacts that are under high 47 

stress, diffuse along grain boundaries, and re-precipitate at pore walls, which are under lower stress (Paterson, 1973; 48 

Raj, 1982; Rutter, 1983). Based on thermodynamic equations established at the grain scale, experiments were 49 

conducted on granular salt and phenomenological models were proposed to predict healing in halite (Spiers et al., 1990; 50 

Yang et al., 1999; Houben et al., 2013). In this paper, we use a homogenization approach to understand the macroscopic 51 

effect of local pressure solution mechanisms at the scale of a Representative Elementary Volume (REV). 52 

 53 

Eshelby’s theory allows calculating the stress and strain fields of a REV made of an elastic matrix that contains 54 

ellipsoidal heterogeneities (Eshelby, 1957). Based on this theory, Mori and Tanaka proposed an explicit method to 55 

predict the homogenized stiffness of the REV, in which the interaction between the matrix and the inclusions is 56 

accounted for (Mori and Tanaka, 1973). However, when it is impossible to identify a dominating phase that can be 57 

considered as the matrix, like in polycrystalline materials, it is necessary to use a so-called self-consistent method 58 

(Kröner, 1961; Hill, 1965), in which the REV is seen as a juxtaposition of inclusions. Each inhomogeneity is seen as an 59 

inclusion embedded in a matrix that has the yet-unknown homogenized properties of the REV. Hence the properties of 60 

the matrix are not known a priori, which makes the model implicit. In what follows, we use a self-consistent method to 61 

upscale stresses and strains induced by local pressure solution. Since the time-dependent strains of the inclusions 62 

depend on thermodynamic processes that cannot be predicted from the far field stresses alone, we model local pressure 63 

solution strains as eigenstrains (e.g., Pichler and Hellmich, 2010). We then use our micro-macro model to simulate 64 

healing around salt cavities used for CO2 storage. 65 

 66 

We first explain the pressure solution phenomenon and we present the corresponding thermodynamic equations at the 67 

inclusion scale. Secondly, we formulate the micro-macro healing model based on a self-consistent homogenization 68 

scheme. We then calibrate the model against published experimental data. Lastly, we present Finite Element simulations 69 

of salt cavity healing during CO2 storage. 70 

Pressure solution model 71 

Let us consider two halite crystals separated by a thin fluid film. A stress increase normal to the crystal boundary 72 

(called contact plane) leads to an increase of chemical potential (Δ) in the solid constituent in reference to the solute: 73 

e=    (1) 74 

where e is the effective stress normal to the contact plane (defined as the difference between the normal stress and the 75 

fluid pressure) and  is the molar volume of NaCl (2.7 × 10-5 m3 mol-1). The drop of chemical potential in the solute 76 

can be expressed as a function of mineral concentration: 77 

(2) 78 

where R* is the gas constant, T is the Kelvin temperature and ΔC is the difference between the ionic concentration in 79 

the fluid films located at contact planes and that in the pores. C0 is the reference concentration in the pores, located at 80 



 

crystals’ edges (considered as sinks). Due to the difference of solute concentration between the contact planes and the 81 

pores, salt ions diffuse from high concentration sites (contact planes) to low concentration sites (pores). Figure 1 shows 82 

a schematic representation of the diffusion path around a pore. We define the elementary heterogeneity of salt rock as a 83 

hollow spherical inclusion that contains a pore located at the intersection of three orthogonal crystal contact planes 84 

(plane XY, plane YZ, and plane XZ in Figure 1). The thickness of the solid wall around the pore is assumed to be 85 

uniform. Noting rg is the radius of the inclusion and W the thickness of the shell around the pore, the radius of the pore 86 

is rg-W. Typically, rg is of the order of 10-4 m. 87 

 88 

Figure 1. Schematic representation of the inclusion model 89 

 90 

The pressure solution mechanism is illustrated in Figure 2. Salt dissolves at contact planes that are under high stress. 91 

We consider that pores act as sinks, so that ions diffuse towards the central pore and uniformly precipitate on the pore 92 

wall. The increase of pore wall thickness is noted W. 93 

 94 

Figure 2. Pressure solution mechanism along contact plane XY 95 

 96 

According to Fick’s first law, the radial diffusion flux J(w) along the contact plane is related to the diffusion coefficient 97 

D and the mineral concentration C as follows: 98 
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w
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Based on the principle of mass conservation, the total mass of mineral that diffuses towards the central pore is equal to 100 

the mass dissolved at the contact plane, which yields: 101 
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where Vc is the dissolution velocity. Pressure solution induces energy dissipation by diffusion. The energy dissipation 103 

per unit volume (Δ̇𝑤) can be calculated as (Lehner, 1990):    104 



 

(5) 105 

The increment of radial energy dissipation is obtained by introducing Eq. 2, Eq. 3 and Eq. 4 in Eq. 5, and by integrating 106 

over the distance that goes from a point at the periphery of the inclusion to the pore wall. It is assumed that the solute 107 

concentration at grain boundaries, C(w), is equal to the solute concentration in the pores (Co) (Rutter,1983; Schutjens 108 

and Spiers, 1999; Pluymakers and Spiers, 2015). The total energy dissipated along the contact plane XY is obtained as:  109 

 (6) 110 

where S is the thickness of the fluid film at the contact plane and Vxy is the dissolution velocity on the plane XY. The 111 

total input work at a contact plane is assumed to be entirely dissipated by diffusion. The velocity Vxy can thus be 112 

calculated as: 113 
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where 𝜎𝑋𝑌𝑒  is the effective stress normal to the contact plane XY. With the expression of the dissolution velocity, we 115 

obtain the inclusion strain rate and the change of pore wall thickness: 116 

(8) 117 

(9) 118 

where As is the surface area of the pore in the center of the inclusion, and z is the chemical strain.  119 

Homogenization scheme 120 

In order to predict the stiffness, deformation and stress of salt rock at the REV scale, a self-consistent homogenization 121 

scheme is adopted. The strain of a spherical inclusion can be expressed as (Dvorak and Benveniste, 1992):  122 

(10) 123 

where i and Ai are the strain and concentration tensors of inclusion i, respectively; n is the total number of inclusions in 124 

the REV (characterized by their porosity and plane orientations); Dij is the influence tensor of inclusion j on inclusion i; 125 

j is the eigenstrain of inclusion j (the chemical strain induced by pressure solution). Based on Eshelby’s 126 

inclusion-matrix theory, the concentration tensor Ai can be calculated as (Dormieux et al, 2006): 127 
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where i is the volume fraction of inclusion i in the REV, Pi is the P tensor (also called Hill’s tensor in some references), 129 

and Ch is the homogenized stiffness of the REV. Pi is a fourth order tensor that depends on the shape of the inclusion 130 

and on the stiffness of the REV. The explicit expression of the P tensor was given by Mura (1987). The homogenized 131 
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stiffness Ch can be calculated implicitly, as follows: 132 
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For spherical inclusions, the influence tensors Dij are expressed as follows: 134 
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Note that influence tensors have a more complex form for ellipsoidal inclusions (see Pichler and Hellmich, 2010). The 137 

stress of the inclusion depends on the stiffness, chemical strain and total strain of the inclusion, as follows: 138 

 :i i i iC    (15) 139 

In a strain-controlled numerical simulation, the strain of the REV (Et), the chemical strain 𝛾𝑡𝑖 of each inclusion, and the 140 

stiffness of each inclusion are known. The homogenized stiffness 𝐶𝑡𝑖 is calculated iteratively, from Eq.11 and Eq.12. 141 

Substituting Eq.13 and Eq.14 into Eq.10, the local strain 𝜀𝑡𝑖 is determined. The local stress of each inclusion is then 142 

obtained from Eq.15. The chemical strain 𝛾𝑡+1𝑖  and the porosity of the inclusions are updated incrementally by using 143 

Eq.8 and Eq.9. 144 

Calibration against oedometer test results 145 

We simulated oedometer tests conducted by Spiers’ group on saturated granular salt (Spiers, et al. 1993). The 146 

micro-macro model presented above was implemented in a Finite Element Method (FEM) package and simulations 147 

were done with only one element, to reflect the behavior at the material point. In granular materials, the shear modulus 148 

depends on porosity (Kováčik, 2008) and increases with the hydrostatic increment of stress (Digby, 1981). Accordingly, 149 

for each inclusion, we assumed that the shear modulus * was related to the porosity of the inclusion  and to the 150 

effective stress e in that inclusion, as follows: 151 

(16) 152 

where , m and n are constants that need to be calibrated. Note that , m and n are assumed to be the same for all 153 

inclusions. *,  and e are inclusion-specific (but the i index was dropped in Eq.16 for clarity). In conformity with the 154 

experiments, the crystal and void size distributions were assumed uniform in the REV, with an initial porosity of 42%, 155 

and a crystal size of rg=0.1375mm (equal to the inclusion size in our microstructure model). Contact plane orientations 156 

were assumed to be uniformly distributed. Numerical creep curves were fitted to the experimental results obtained 157 

under compressions of -8.0MPa, -4.2MPa and -1.1MPa (Figure 3). The corresponding calibrated parameters are 158 

reported in Table 1. We define the prediction error as the difference between the area below the experimental creep 159 

curve and the area below the numerical creep curve, normalized by the area below the experimental creep curve. The 160 

error made in the numerical prediction is 5.7%, 4.0%, and 3.7% for the oedometer test under -8.0MPa, -4.2MPa and 161 

-1.1MPa respectively. 162 

 163 

Table 1 Parameters used to simulate oedometer tests 164 

Chemical parameters Elastic parameters 
DS  m n 

 * 1 m n
e    



 

2.0×10-7 mm3 8.4 0.2 0.64 
 165 

 166 
Figure 3. Calibration of the micro-macro healing model against oedometer test results 167 

 168 

During the oedometer tests, the creep rate decreases due to: (i) The increase of the diffusion path length in each 169 

inclusion: precipitation at the pore wall increases the migration distance of the ions from the periphery of the inclusion 170 

to the pore wall; (ii) The decrease of compressive stress at inclusion and REV scales: during pressure solution, the 171 

dimensions of the inclusions decrease in the directions normal to the contact planes where dissolution occurs; 172 

compressive stress at contact planes is relaxed, which leads to smaller chemical potential differences between the solid 173 

and the solute, hence less dissolution. 174 

Simulation of CO2 storage in a salt cavern 175 

The FEM is used to simulate CO2 storage in a salt cavern. Based on the work of Dusseault (2004), the salt cavern is 176 

modeled as an oblate spheroid with a vertical axis of 100m and horizontal axes of 150m. The centroid of the cavern is 177 

located at a depth of 1,200m and halite density is taken equal to 2,400kg/m3. After excavation, the cavern is sealed at a 178 

pressure of 15MPa. The FEM model’s dimensions are 1650m×375m×375m (Figure 4). We used a Continuum 179 

Damage Mechanics (CDM) model (described below) to simulate the excavation phase. In a second stage, the 180 

micro-macro healing model presented above was used to simulate the storage phase, by applying a 15MPa pressure at 181 

the cavern wall. Damage calculated at the end of the excavation phase is used to calculate halite porosity at the 182 

beginning of the storage phase. During the storage phase, porosity decreases due to pressure solution, which is expected 183 

to increase halite stiffness – a process referred to as “self-healing”. 184 



 

 185 
Figure 4. Dimensions and mesh of the FEM model 186 

 187 

A thermodynamics based CDM model is used to predict excavation damage. At REV scale, the expression of 188 

Helmholtz free energy s is given as (Halm and Dragon, 1998; Zhu and Arson, 2015): 189 

       2 * *
s

1 tr tr tr tr 2 tr
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where o and o are Lamé constants;  and  are damage material parameters; * is the dimensionless damage variable, 191 

considered as a scalar porosity in the present study. The damage driving force Yd is expressed from thermodynamic 192 

conjugation relationships, as follows: 193 
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(18) 194 

The damage criterion is expressed as: 195 

(19) 196 

where ko is the damage initiation threshold and k1 a damage hardening parameter. During the initiation and propagation 197 

of damage, the consistency conditions should be satisfied (i.e., fd=0 and fd=0). The damage parameters used for the 198 

simulation, taken from a prior study (Zhu and Arson, 2015), are reported in Table 2. 199 

 200 

Table 2 Damage parameters used for the excavation simulation 201 

o o   ko k1 
2.64×1010 Pa 1.75×1010 Pa 1.90×109 Pa -2.04×1010 Pa 1000 Pa 2.50×105 Pa 

 202 

Figure 5 shows the distribution of damage around the salt cavern after excavation. The maximum damage observed 203 

reaches 9.8% and appears in the middle of sidewall, due to the high compressive principal stress. Damage drops rapidly 204 

away from the cavern wall. The size of the damage zone is of the order of the cavern’s radius. 205 

 206 



 

 207 
Fig. 5 Halite damage after excavation 208 

 209 

In a second step, we use the micro-macro healing model with randomly oriented inclusions to simulate the storage 210 

phase. The REV porosity is calculated from the porosity of the inclusions, and used as the damage variable in the 211 

expression of REV stiffness that derives from the expression of the free energy in the CDM model above (Eq.17). The 212 

minimum (compressive) principal stress distribution around the cavern is represented in Figure 6, for DS = 1.0×10-18 213 

m3 and rg=0.13mm. The corresponding evolution of damage at the cavern wall is shown in Figure 7. The evolution of 214 

cavity convergence is illustrated in Figure 8. 215 

 216 

 217 

(a) Just after excavation 218 

 219 
(b) After 100 hours of storage 220 

Figure 6. Minimum (compressive) principal stress distribution around the cavity (zone of dimensions 225m×300m).  221 

 222 

Figure 7. Evolution of damage at the cavern wall during the storage phase 223 



 

 224 

 225 
(a) Evolution of the cavity shape (magnified 200 times) 226 

 227 

(b) Evolution of horizontal and vertical convergences during storage 228 

Figure 8. Evolution the deformation of the salt cavern during storage 229 

 230 

Figure 6 clearly shows that the compressive principal stress decreases over time during the storage phase. This is 231 

because the dissolution of salt at contact planes triggers negative chemical strains at the inclusion scale. Since halite 232 

elements are geometrically constrained, inclusion shrinkage results in tensile stresses at the REV scale, which reduce 233 

the overall compressive stresses around the cavern. The decrease of compressive stress is particularly visible in the 234 

elements with large initial damage in the middle of the sidewall, where the compressive principal stress switches from 235 

-43MPa after excavation to -15MPa during storage. Figure 7 confirms that stress redistribution at the cavern wall is due 236 

to healing, i.e., to the reduction of damage, defined here as porosity. Because pressure solution relaxes compressive 237 

stress at the contact planes, the dissolution rate decreases over time as salt precipitation occurs at the pore walls. In 238 

other words, healing is self-limited. As a result, the healing rate decreases rapidly during the three first days of storage, 239 

after which damage reaches a plateau. At the sidewall, damage amounts to 9.8% after excavation, and to 9.6% after four 240 

days of storage. Healing thus reduced the maximum damage by 2%. Just after excavation, the vertical convergence is 241 

-0.048m, and the horizontal convergence is +0.015m (see Figure 8). Pressure solution increases convergence, which 242 

reaches 1% in both horizontal and vertical directions after four days of storage. Cavern deformation stabilizes when 243 

healing reaches a plateau. 244 

 245 

Figure 9 presents a sensitivity analysis of the parameter DS, which is the product of the diffusion coefficient (D) by the 246 

thickness of the fluid films at contact planes (S). Clearly, the healing rate increases with DS, which can be seen as a 247 

diffusive efficiency parameter. Physically, pressure solution occurs faster when the diffusion coefficient is higher and/or 248 

when the inter-crystalline space is larger. However, DS does not influence the final damage value at the cavity wall, 249 

because the rate of pressure solution is independent of the stress redistributions that occur around the cavern (Figure 250 

9(a)). Similarly, a high diffusive efficiency accelerates convergence but does not influence the final shape of the storage 251 



 

facility (Figure 9(b)). 252 

 253 

 254 

(a) Damage evolution 255 

 256 

(b) Convergence development 257 

Figure 9. Effect of diffusive efficiency on cavern healing 258 

 259 

Figure 10 illustrates the influence of the size of the inclusions on salt healing. Inclusion size is equivalent to crystal size 260 

and indicates how long the diffusion path is, from high stress dissolution sites to low stress precipitation sites. Larger 261 

inclusions imply longer diffusion paths thus lower healing rate. At same initial porosity, larger inclusions also mean 262 

fewer inclusions. After four days of storage, healing with a crystal size of 0.23mm is only 75% of the healing obtained 263 

with a crystal size of 0.13mm. The asymptotic values of damage and convergence are not reached after four days, 264 

which shows that the healing rate is more sensitive to the crystal size than to the diffusive efficiency. 265 

 266 

(a) Damage evolution 267 



 

 268 

(b) Convergence development 269 

Figure 10. Effect of inclusion radius on cavern healing 270 

Conclusions 271 

In this paper, we propose a micro-macro healing mechanics model that captures the effect of pressure solution on halite 272 

porosity. Thermodynamic equations of pressure solution are established at the scale of an inclusion defined as a hollow 273 

sphere intersected by three orthogonal contact planes that contain a fluid film. Stress at the contact planes determines 274 

the dissolution rate. The pore at the center of the inclusion is viewed as a sink: ions diffuse from the dissolution sites to 275 

the pore wall, where they precipitate. The resulting rate of deformation of the inclusion is calculated from mass balance 276 

equations, and then defined as an eigenstrain in a self-consistent homogenization scheme. The micro-macro healing 277 

model is calibrated against published oedometer test results and implemented in a FEM package. 278 

 279 

CO2 storage in a deep oblate spheroidal salt cavity is simulated. A CDM model is used to calculate the damage induced 280 

by excavation. The micro-macro healing model is used to simulate the storage phase under constant gas pressure. In 281 

real storage conditions, gas pressure increases due to convergence. However, in the present study, convergence was 282 

limited to an asymptotic value of 1%, which was not found to influence gas pressure. Under these conditions, numerical 283 

calculations show that only 2% of the excavation damage can be recovered at the sidewall, where damage is the highest. 284 

Damage and convergence reach a plateau after four days of storage. The healing rate decreases over time because (i) 285 

Salt precipitation at pore walls lengthens the diffusion path of the ions dissolved at high compression stress sites; (ii) 286 

Healing results in a stress redistribution around the cavity, reducing compressive stresses, thus limiting the triggering of 287 

pressure solution. Higher diffusion coefficients and thicker fluid films can accelerate healing, but cannot change its 288 

asymptotic value. A larger crystal size significantly decreases the healing rate. 289 

 290 

Simulation results indicate limited healing potential around salt cavities used for CO2 storage, but it has to be noted that 291 

temperature effects were left out in this study. A more comprehensive damage and healing thermo-hydro-mechanical 292 

model will be formulated for further analyses. As is, the proposed modeling framework can be used to optimize some 293 

microstructure parameters of crushed salt buffers (such as porosity and fluid inclusion distribution) and it can be 294 

extended to other self-healing materials.     295 
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